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Abstract 

Using a second-order phenomenological equation Ji = 2j LqXj + Nj, k Lqk X]X k 
and assuming that the system is at a state near equilibrium, it has been shown that 
the symmetry of Lij k is retained with respect to the permutations of suffices 'i', 'j' 
and 'k'. Furthermore, using the second-order flux equations, the thermodynamic 
stability criterion is expressed. The symmetry is shown to be retained in a reaction 
scheine representing the 'Template model'. The significance of the stability criterion 
as expressed by the higher-order phenomenological coefficients is discussed. 

In the vicinity of  equilibrium, the macroscopic fluxes maintain a linear relation 

with the forces. As one increases the distance from equilibrium, the fluxes may be 

related to the forces in a non-linear way. Since non-linear systems, eren in their simplest 

forms, exhibit a number o f  special dynamic characteristics, it would be interesting to 
study the behaviour of  such systems, the distance from equilibrium remaining small. 

Firstly, one may look at the symmetry  properties of  the non-linear phenomenological  

coefficients. In the case where a higher-order symmetry  is obtained for such coefficients,  

the number of  independent  parameters of  the system would be reduced. This would 
obviously reduce the number of  possible trajectories of  the system in the phase space. 

Another  important  question related to symmetry  of  higher-order phenomenological  

coefficients is the possible existence of  one or more critical conditions at ~h ich  the 
symmetry  may be broken.  The present report  shows that the breaking of  higher-order 
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symmetry may correspond to some special situation which has no counterpart in the 
linear domain. 

Let us consider a second-order non-linear system in which the fluxes (J) and 
forces (X) are related as 

Ji = Z LikXk + Z L i k t X k X ,  • (1) 
k k,l 

Writing Ji - ~eq = ~Ji  and X i - X ?  q = ~ ß i  and remembering that Ji eq = Xi  eq = 0 
for each i (by definition of equilibrium) [3] we obtain 

k k , l  
(2) 

The thermodynamic stability criterion can be expressed as [4] (assunlinghomogeneity) 

i.e. 

6J i .  6 x  i > o, (3) 
i 

Z 6Xi(Lik + Z L i k I ~ X I ) 6 X k  >~ O. 
i,k 1 

Writing 

~ik  = Lik  + Z L i k l S X l ,  
1 

eq. (41) can be wfitten in the matrix form as 

(4) 

(53 

6X T 0 6X / > 0 .  (6a) 

In other words, the thermodynamic stability criterion can be expressed in terms of 
the higher-order phenomenological coefficients as 

det IILik + ~ Lik 16Xt[I ~> O. (6b) 
l 

The equality sign in eq. (6a,b) prevails only at steady state or equilibrium. Under 
mass closed conditions, a chemical system, operating in the range of validity of the 
ideal solution approximation, taust exhibit a unique [5] asymptotically stable [4] 
equilibrium point., This obviously demands 0 to be definite, or in other words [6] 

Oii > O" Oii Ok k ) 0~ k , (7a) 
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i.e. 

and 

(Lii + ~,, Liil~)Xl) > 0 (7b) 
I 

Z (Lik l 'Lk im -Li i l 'Lkkrn)~)XlöXm - Z (Lkkj 'Li i  +Li i j 'Lkk  
~m / 

- Lki/. Lik - Lik i .  L ig )6X j <~ (LiiLkk - L~k ) . (7c) (7c) 

The dependence on the phase space trajectory is expressed by the inequalities 
expressed in eqs. (7b) and (7c), respectively. 

Before we consider an actual chemical system to decipher the implications of 
the stability criterion expressed in terms of L ü and Lijk, let us consider some general 
properties of the second-order phenomenological coefficients. I_et us assume that 
the second-order non-linear system is in a state close to equilibrium. The distance 
from equilibrium is to some extent an arbitrary concept. By 'closeness' to equilibrium, 
we may not necessarily mean 'linearity'. This perhaps is most relevant in chemical 
systems which are intrinsically non-linear in nature. In states close to equilibrium, 
macroscopic reversibility (MR) [1,3,7] must be valid. If zX~ represents a vector, 
each component of which are a-type macroscopic variables representing the devia- 
tion of a given thermodynamic parameter from its corresponding equilibrium value, 
MR can be written as [1,2] 

A~i ( t )A~g( t  + r) = A~i( t  + r ) A ~ k ( t ) ,  ( 8 )  

where the bar indicates time average. Furthermore, we assume the validity of the 
condition [1] 

A ~ i X  j = K ~ i j .  (9) 

Expanding A~i([ + T) at ' t '  up to second-order terms, we obtain 

, r ~ z x ~ i ( t  ) . (10) 

Subtracting A~i(t)A~k (t) from both sides of eq. (8) and using eq. (10), we obtain 

where 

Mik = l]4ki , ( l l a )  

1 2 A~iß~" k ( l l b )  Mik = "gAUl A~k + ~ r 
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Since we have chosen a second-order equation connecting Ji and X i, the corresponding 
equation connecting Ji and A~ i can be written as 

B = ~ i i  = Z Mij :X~j + Z Aijk A~]z_~}k " 
j j ,k  

(12) 

where Aij and Mij k are rate coefficients of first- and second-order variation of rates. 
Differentiating both sides of eq. (1 2 ) with respect to times, 

j j ,k 
(13a) 

Using eq. (12)in (13a), 

A~' i = ~ AijA/,  n A~ m + ~ (Ai/A/m z + AiqAj,  n + Aij lA/m)A~m A~I . (13b) 
/,m j,m,l 

Writing Æim = EiAijAjm and negecting the third-order product terms of A}l's, we 
obtain from eqs. (1). ( l la ) ,  (1 lb), (12) and (13b): 

TAXi Lk]/t{j + Z L k j l X ] X I  + } Z BkjA~i/k~ / = ZUik = 1~']ki , (14) 
j,l j 

Comparing each power of r fröre the expression of Mik and 31kl, and furthermore 
assuming the validfly of eq. (9) and that of Onsager symmetry (Lk/ = L/k) [1,2],  one 
obtains the-symmetry condition (for the first power of r ): 

Gik = ZLkj lN jX I  A~i = ZLi] I  NjX l a c k  = Gki . 
j, 1 j,l 

(15) 

Assuining that p represents Einsteinian fluctuation probability, we know that 
p = exp(AS/k) ,  where AS = S - S e q  and S represents the entropy of the system. 
Using the definition 

ó A S  
X i - 

we have the following: 

A~kä~X, = I . . .  l A C k  ~klnt)  aa~j X l d A ~  1 . . .  dA~,  

[A}k 3p dA}i . (16) 
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Now, 

ap dA~j = pA~kl o - P 3A~j dA~j -Sk i  p . a~~ aa~i 
~j ~j ~] 

From eqs. (16) and (17), 

~Gxix~  = - k G j  f . . .  JXlpdA~I . . . d A ~  n . 
f 

Since, in eq. (16). ] and l are interchangeable, equation (181) can also be written as 

A~kX/XI = -kSgl J . . . I X j t )  d A ~ l . . . d A ~ n ,  

~, ~n 
OF 

AG XiXl = - k G i  ~fz = - k G t  Xj 

From eqs. (15) and (19), we obtain 

k - I  Gik = - Z LkjlSij"l(l  = -- Z Lkjlöil£l(j 
/,t j,t 

and 

I,.« a~, = - Z L , A j  ~~ = - Z L , A ,  xj  
j,t j,l 

Z L k j i X i  = Z L k i i X j  = Z L i k j X  j = Z L i j k X  ] . 
J J J J 

Since Xj's are linearly independent, equation (21 ) will hold good provided 

Lkj  i = Lxq  = L ik  j = Li j  k . 

Since we have chosen i, j and k arbitrarily, equation (22) will also imply 

Lkj  i = L i k  i = Lji  k . 

Writing eq. (22a) together with eq. (22b), one obtains the symmetry relations 

Lij  k = L ik  j = L jk  i = Lji  k = Lki  j = Lkj  i . 

Thus, the phenomenological coefficients Lqk's retain symmetry for all 
permutations with i, j and k. 

(17) 

(18) 

(19a) 

(19b) 

(20a) 

(2Ob) 

(21) 

(22a) 

(22b) 

(23) 

possible 
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There exists a special situation when the symmetry as expressed by eq. (23) is 
broken. Such a condition can be written as 

for each k 

Z (L~,-  L~,)~V, = o 
J 

Z 4 %  = 0 
/ 

and i, where 

(23a) 

(23b) 

aß i (23c) • = Lkj i - L k i  j .  • 

Thus, one obtains for each (i) the condition 

H 

j = l  

Z 4 %  = 0 
j = l  

n 

Z ~F"~:; = 0 (23d) 
j = l  

Similarly, one obtains 'n' such equations for each 'k'. Thus, one obtains 'n 2' equations 
of the form (23d), i.e. there are 'n 2' conditions for which the symmetry Lij k = Lik / 
can be broken. Thus, for a 2D system (i.e. a system having two independent fluxes), 
there are four symmetry-breaking conditions and for a 3D system, there are nine 
symmetry-breaking conditions. This symmetry has no parallelism in the first-order 
phenomenological equation. In fact, it is not possible to obtain such conditions in 
the domain of validity of  the linear laws. 

In order to demonstrate the implications of symmetry relations (eq. (23) 
between second-order phenomenological coefficients in the chemical system, let us 
consider the following reaction scheme: 

l - ~ X  

X + X  ~ X  2 

X 2 + X ~ Y1 (R) 

X + Y ~ ~ Y 2  

I"2 .~ 2 X 2 

X 2 . e - F .  
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The scheme (R) presents the template model 'T '  which, as proposed by Nicolis and 
Prigogine [7], describes the synthesis of low-molecular weight homopolymer units 
such as poly-uridylic or poly-adenylic acids. A precursor l enters into the system to 
form an active monomer X. The condensation of two monomers then produces the 
dimeric molecule X 2 , which then serves as a template for its own formation through 
two intermediates Y1 and Y2. Finally, X 2 is transformed into the product F through 
an isomerization reaction. The overall composite reaction is given by 4l -- 2F. The 
reasons behind the choice of this particular scheme are as follows. Firstly, the reaction- 
network (R) is stoichiometrically dependent [8] so that all elementary reactions can 
not proceed independently and hence the first-order oft-diagonal phenomenological 
coefficients (i.e. ( d J i / d X k ) e q )  are non-vanishing. Secondly, the kinetic equations are 
nonlinear and finally, the scheme exhibits an inherent asymmetry in the sense that 
all the chemical flows do not have syinmetrical forms, as shown below. 

The reaction-affinities A i (i = 1 , . . . ,  6) for such reactions obey the relations 

A 2 - A 3 - A 4 - A s  = 0  or A2 =A3  + A t + A s  • (24) 

The rate of entropy production is given by 

6 

To = ~,  A i o  i , 

i=1 

where v i is the velocity of the /th reaction. From eqs. (24) and (25), 

(25) 

T = A 1 Öl + /13(03  + 02) + /14(04 + 02) + /15(05 + 02) + /16 06 ' (26) 

Hence, we can write 

J1 = O1 and X1 = A1 

J2 = 06 X2 = A 6 

J3 = 03 + 02 X3 = A 3 

J4 = 04 +v2 X4 = A4 

J 5  --" 0 5  -t- v 2 X S = A s  - 

(27) 

The expression for Ji's are not symmetrical and hence apparently do not imply the 
symmetry of second-order phenomenological coefficients. The reaction-affinity A i 

can be expressed as 
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(~ (vi+v,~ A;~RT,n ~ _ : R T l n  - 
\ v T /  v i i 

[ Vi 
= R T l n  1 + v[ (28) 

A1 

or 

[v i = v i+ - v[, where v i+ and v~ represent the forward and backward reaction-velocity 
for the /th reaction]. 

In the neighbourhood of equilibrium, v [ -+ v~., v i -+ O, and eq. (28) assumes 
the form 

=RTI(V-~i_) - ( O i )  2 ] (neglectingthehigher-orderterms), 
L\ vi / \ v[ / j 

v i = 1 +- 1 R T " 

Considering upto the second-order term, taking the ( - v e )  sign, and assuming 
u[ -+ (o[)eq, we obtain 

Bi (Oi')e q 3.42 
vi - R T (R T) 2 (° ; )eq  " (29) 

We can write eqs. (24), (27) and (29) as 

Al (Vl)eq 3A21 
Ja - R T  (R T) 2 (V~)eq 

2 A6 (06)eq BA 6 
J2 - R T ( R T )  2 (U6)eq (30) 

1 
J3 - Æ T [A3 (02)e q + (03)eq + A 4 (V2)eq + A s (02)eq ] 

3 
(R T) 2 

[A 2(07)eq + (03)eq -- (A]  + A ~  + 2 A 3 A  4 

+ 2A4A s + 2 A 3 A s ) ( o 2 ) e q  ] • 

The expressions for J4 and Js can be obtained by exchanging the subscripts 3 and 4 
or 3 and 5 in the last equation of (30). 
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The equations in (30) obey the symmetry relations 

and 

L n k  = LIÆ 1 = L k l  1 = 0 

L22 k =L2k 2 =Lk22 = 0 

6 
Lj j  k = L jk  j = L kj j - (R T) 2 

k =  1,2 . . . . .  5 (3la) 

(O2)eq j = 3, 4, 5 k = 3,4,  5 J = k (31b) 

6 
Lijk = Ljik = Likj = Ljki = Lkij = Lkji - (RT): Q~2)eq (31c) 

(wheni,  j , k  = 3 , 4 , 5  and i = j  = k )  

= 0  (when any of the subscripts represent 1 or 6) .  

Let us now consider the significance of the stability criterion expressed in 
eq. (7b). For reaction-scheme (R), this criterion yields 

5 
Lii + Z Liik 6 X  k >~ O. (32) 

k=l 

For i = 1 and 2, L i i  k = 0 as seen from (3la) and hence the stability criterion 
(132) does not impose any additional restriction on the system. For i = 3, from eq. (30), 

5 (V2)eq + (u3)eq 6 
L33 + E L33k(~Xk  = R T  (RT) 2 [(U2)eq + (°3)eq(~A3 

+ (v;)eq aA4 + (v~)eq ~As] > 0.  

Putting 
(v~)oq 

(02)e q + (Ok)e« 

we obtain the inequalities 

6A3 + 0¢3 ~A4 + a 3 8 A s  <~RT/6  (33a) 

a 4 5 A 3  + ~ A 4  + a46As  < R T / 6  (33b) 

a s S A »  + a s S A 3  + S A s  < R T / 6 .  " (33c) 
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Similarly, the stability criteria expressed in eq. (7c) yields some other inequalities 
which impose additional constraints on the trajectory of the phase-space constructed 
from 8 A3, 8 A4 and 8 As, which comprises of the cyclic part of the scheme (R). 
However, there is no such restriction on the trajectories of 8A1 and 8A6. It is worth 
emphasizing that 8 A i in eq. (33) represents the deviation of the /th reaction-affinity 
from equilibrium. The symmetry-breaking conditions, for which the stability criteria 
(33a-33c)  are no longer valid, can yield some threshold values for 8A3, 8A4 and 
8As,  and hence can specify the boundary of the near-equilibrium regime, beyond 
which the symmetry relations will not be valid. The stability criterion expressed in 
terms of the first-order equation can not give any such quantitative idea about the 
transition of the system from the thermodynamic to the dissipative branch. 
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